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ABSTRACT 

The invariant imbedding method is used to provide algorithms for numerically com- 
puting eigenvalues for the Schrodinger equation and other eigenvalue problems. For 
the sake of illustration, the Hermite and Bessel equations are studied regarding their 
eigenvalues and, in the Hermite case, the asymptotic behavior of the eigenfunctions. 
The most salient feature is that the algorithms provided have good computational 
behavior in dealing with notoriously unstable problems. 

I. INTRODUCTION 

In recent papers Wing [l], Beyer [2], and Hagin [3] have applied the method of 
invariant imbedding to the study of the asymptotic behavior of solutions to certain 
initial value problems. Specifically, the behavior for large t of solutions to the 
following type of problems were studied: 

u”(t) + (c + g(t)) u(t) = 0, u(x) = cos 8, 

where g is “small” in some sense as I -+ co. 

U’(X) = sin e (1) 

It was pointed out in [3] that the techniques used apparently offered a workable 
algorithm for making parameter studies (c the parameter). For example, certain 
eigenvalue problems associated with (1) were suggested. 

Here we primarily wish to accomplish two things. First, we show that the 
imbedding technique is applicable to a much larger class of problems than those 
studied before (which were, roughly speaking, perturbations of constant coefficient 
equations for large t). Secondly, we emphasize the computational features of the 
algorithms provided by the imbedding process (the main feature can be sum- 

1 This work was supported in part by National Science Foundation Grant GP-7641. 
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marized as “stable” algorithms for highly unstable problems). We attempt to 
accomplish both goals at once by using the resulting algorithms to numerically 
compute eigenvalues for two well-known problems of Bessel and Hermite. These 
equations were chosen for the sake of illustration and chosen both because of their 
notoriety and the fact that they are equations of considerably different behavior 
than that of the equations previously treated in [I]-[3]. In particular, the Hermite 
and Bessel equations both have first derivative terms and the coefficients do not 
approach constants in the limit; moreover, Bessel’s equation is singular on the 
interval (0, 1). 

Finally, we indicate how the imbedding approach can be used to provide an 
algorithm for computing the asymptotic behavior of the eigenfunctions. This is 
done in Section V by obtaining an algorithm for computing the coefficient of the 
leading term of the Hermite polynomials. 

For the sake of brevity many details and most of the rigor is omitted. The 
interested reader is referred to [3] with the encouragement that the analogous 
theorems can be obtained for the problems considered here (as well as many other 
problems). However, it is hoped that enough of the technique is illustrated to 
enable the interested person to apply the method to problems that he may be 
concerned with. 

II. SOME PRELIMINARIES 

We briefly consider the following general second-order initial-value problem 
and initiate the imbedding technique. 

28 + a(t) u’(t) + b(t) u = 0, u(x) = cos 8, u’(x) = sin 8 (2) 

where a and b are continuous on some interval 01 < t < /3 < co. We are interested 
in the behavior of the solution, u(t; x, e), as t ---f p. 

Suppose, for fixed x and small A, we compare the two solutions to the corre- 
sponding initial value problems, u(t; X, 0) and u(t; x + A, 0+); where 0+ = B+(d) 
is so chosen so that 

u(t; x, e) = rlu(t; x + d, e+). (3) 

Expressions for 7 and 8+ can be obtained as follows. Using the mean-value 
theorem, we have 

u(x + d; x, e) = u(x; x, e) + d(4; x, e) d 
= cos e + d sin 8 + 0(d), 

d(x + d; x, e) = uyx; X, e) + dyf; X, e) A 
= sin 8 - d[a(x) sin t9 + b(x) cos 01 + O(A) 



48 HAGIN 

as A + 0. Define 

rl = {[u(x + A; x, e)]” + [u’(x + A; x, e)]“}‘/” 
= 1 + A sin Qcos 0(1 - b(x)) - a(x) sin 01 + o(A). 

Setting t = x + A in (3) we see that 8+ must satisfy 

u(x + A; x, e) = 7p(x + A; x + A, e+) = 7j cos e+; 

hence 

cos 8 + A sin 0 + o(d) = cos S+(l + L1 sin B[cos 0(1 - b) - u sin 01) + O(A) 

as A -+ 0. Solving for 8+ we are lead to the desired expressions for 8+ and 7. 

8+ = 0 + A [CO? 0(1 - b(x)) - U(X) sin i3 cos 8 - I] + O(A) 

7 = 1 + A sin ~[COS Ql - b(x)) - U(X) sin 01 + o(d) 
(4) 

as A + 0. The importance of (3) and (4) will be apparent in the next section. 
Let ul(t) and z&t) be two solutions to the above differential equation such that 

w(t) = Wronskian [nr , uz] f 0. It is well-known that we can express 

~(t; X, 8) = {[COS eugx) - sin eu2(x)yw(x)~ z&) 

+ {[sin eu,(x) - cos eqx)y W(X)> u&) (5) 

= A(~, ehw + B(X, 0.4). (6) 

If the asymptotic behavior of ul(t) and z+(t), as t---f /3, is known, then clearly 
the coefficients A and B will determine the asymptotic behavior of u(t; x, 0). The 
idea then is to obtain algorithms for computing A and B which do not depend 
upon knowing the solutions u1 , 2 u or u(t; X, e). In most cases of interest one of 
the fundamental solutions, say ul(t), will be dominant as t + /3; in this situation 
we usually confine our interest to the coefficient A (the exception to this is Section V). 

Before going further with the imbedding technique, it is necessary that one 
knows the asymptotic behavior of two fundamental solutions ul(t) and u%(t). This 
information can often be obtained from the classical power-series technique 
(applied at p) or the standard asymptotic behavior results for linear systems 
(e.g., see [4]) or perhaps from knowledge of the physical problem. 

In the sequel we derive algorithms for computing one or both of the coefficients 
A and B for the Hermite and Bessel equations. These examples hopefully will 
illustrate rather clearly how the method can be applied to other problems. 



COMPUTATION OF EIGENVALUES 49 

III. THE HERMITE EQUATION 

We now consider the following form of the Hermite problem 

28 - (2t/h) 2.4’ + # = 0, u(x) = cos 8, u’(x) = sin 0 (7) 

where h > 0 is a parameter. We are especially interested in the behavior of the 
solutions, u(t; x, 0), as t -+ + co. 

It is easily verified that there exists two solutions to the Hermite equations as 
follows: 

y(t) = S t-A/2-1et2/A[1 + o(l)]; u;(t) = t-A/2etelA[l + o(l)], 
(8) 

u2(t) = -P[l + o(l)]; u;(r) = - +I + o(l)] 

as t -+ co. Referring to (5), (6), and (8) it is clear that 

4t; X, 0) = ~6, 0) m + B(X, 0) ~,w 

where 

(94 

A(x, e) = [sin exq + 0(l)) - cos e i~+/~-l(l + o(l))]e-““l” Pb) 

as x -+ co. We now obtain a way of computing A(x, e). 
Noting the behavior of A for large x we are lead to define 

J(x, e) = A(x, e) ese/A (X + I)+. 

Observe that A(O, 0) = A(0, 0) and that 

A(x, e) = sin 8 + 0(l) 

as x -+ co. Finally, computational considerations lead us to make the final defi- 
nition 

@(x, e) = A(x, e) - sin e 

and it is 02(x, 0) that we work on. 
It follows easily from (3) that 

A(~, e) = rl~(x + d, e+) 

and hence 

exp[-x2/X1(x + l)“12[cZ(x, e) + sin e] 

= 7 exp[-(x + L.Q2/h](x + d + l)“l”[@(x + d, e+) + sin e+]. 



50 HAGIN 

Using this last identity and the expressions for q and 8+ given by (4), we obtain 
the partial differential equation 

~+~~[sin20$--11]=cZ[c0s2~~- 2x\2]+[cosB--t]. 
2x + 2 

(10) 

Furthermore, by (9b) and the definition of a we get the “boundary condition” 

lim a((~, e) = 0 uniformly in 8. (11) x+m 

It can be shown that problem (lo)-(1 1) has a unique solution. A representation 
of the solution is given by the method of characteristics; namely, 

qx, e) = 1,” [$$- - cos 01 exp 11: [& - cos2 try] +I ds, (12) 

P(s) = sin 2&/h) - 1; 0(x) = 8. 

Summarizing, for a given value of (x, 0) the corresponding solution to (7) can be 
expressed 

~(t; X, e) = (X/2)t-A/2-1eta/A[A(x, e) + 0(l)] 

as t + co; where 

A(x, e) = (X + 1)A/2e-“alA[cT(x, e) + sin e] 

and CZ can be computed using (12) above. 

IV. THE HERMITE EIGENVALUE PROBLEM 

We now illustrate the computational aspects of the results of the previous 
section by studying the eigenvalue problem for the Hermite equation. One usually 
states this problem for the interval (-co, co); however, because of the symmetry 
(in t) of the equation it suffices to consider the interval (0, co). Hence we consider 

24” - (2t/A) 24’ + u = 0, u(o) = cog 8, U'(O) = sin e 

for h > 0. Also we will consider only 0 = 0 and 0 = 77/2. 
We can pose the eigenvalue problem as follows: 

Find the values of h > 0 so that the solution to (13) has the 
property u(t; 0, e) e-et +Oast-+coforanyE>O. 

(13) 
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From the work of the previous section it is clear that h is an eigenvalue iff 
A(0, ~9) = 0 and this is true ifI G!(O, 19) + sin l9 = 0. Hence, for fixed 0, the eigen- 
values for (13) are precisely the zeros of the function 

A@; 0) = qo, e) + sin e 
and A(h; 0) is given by 

A(h; e) = sin e + m X sin 0 
I[ ___ - cm 81 exp {j: [& - co9 OF] ~$1 & ll 2x+2 

B’(s) = sin 2&s/h) - 1; B(o) = 8. 
(14) 

Using (14) we can compute the eigenvalues of (13) by the following simple 
two-step process: 

(1) For fixed 0 (specifically for 8 = 0 or 6 = n/2) one computes A(h; 0) for a 
discrete set of h-values, thus producing a rough graph of d vs. X. In this step a 
rather course h-grid can be used; also the infinite integral in (14) can be approxi- 
mated by a relatively short integral. 

(2) Using the approximate zeros of A suggested by the graph one can iterate 
in order to locate the eigenvalues to several decimal places. Using the secant 
method, convergence to 5-6 significant figures is obtained in 4-5 iterations. 
Fortunately, in this problem (as well as several other problems) we found that the 
integral in (14) converges more rapidly as h approaches an eigenvalue. 

The computational results are illustrated in Table I. As is easily verified (since 
the eigenvalues and eigenfunctions are known for this problem) for 0 = 0 [hence 
u(O) = 1 and u’(O) = 0] the resulting eigenvalues are: 4,8, 12,... . For 6’ = 7r/2 
[hence u(O) = 0 and u’(O) = l] the eigenvalues are 2,6, lo,... . 

The major advantage this algorithm has over more conventional techniques 
(e.g., numerically integrating the equation (13) for a large r-interval) is its stabilizing 
effect. It is common knowledge how difficult it is to integrate equations like (13) 
for large t-intervals; particularly, in attempting to integrate an eigenfunction one 
finds that it is, for large t, overpowered by the larger solution of exponential 
behavior. In contrast the algorithm above exhibits very good computational 
behavior; and this is particularly true for h at and near eigenvalues. 

V. THE ASYMPTOTIC BEHAVIOR OF THE HERMITE POLYNOMIALS 

Once the eigenvalues are located it is often of interest to consider the eigen- 
functions. One can, of course, for each eigenvalue integrate (13) numerically to 
obtain (in this case) the Hermite polynomials. However, if it is necessary to know 
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TABLE I 

CALCULATION OF EIGENVALUES FOR THE HERMITE PROBLEM 

A. 8 = CT/2 8=0 

eigenvaiues are 2, 6, 10, . . . eigenvalues are 4, 8, 12, . . . 

x 44 h A(4 

1.8OOOOOO 
2.3OOOOOO 
2.8OWOOO 
3.3OOOoOO 
3.8OOOOOO 
4.3OfmOO 
4.8OOOOOO 
5.3OOcQOo 
5.8oooooO 
6.3OOOOOO 
6.8OOOOOO 
1.3OOOOOO 
1.8oooooO 
8.3OOOOOO 
8.8oooooO 
9.3OOOOOO 
9.8OOOoOO 

10.3OOoOO0 

.03565 3.8OOOOOO -0.02399 
-0.04915 4.3OOOOOO 0.03418 
-0.09308 4.8OOOOOO 0.08480 
-0.12282 5.3OOOOOO 0.12464 
-0.13341 5.8OOOOOO 0.15002 
-0.12718 6.3OOO000 0.15701 
-0.10545 6.8OOOOOO 0.14182 
-0.06964 7.3c#OQw 0.10140 
-0.02183 7.8OOOOOO 0.03422 

0.03486 8.3OOOOOO - 0.05857 
0.09583 8.8oooooO -0.17184 
0.15464 9.3OOOQOO -0.29494 
0.20280 9.8OOOOOO -0.41014 
0.22982 10.3OOOOOO -0.49144 
0.22356 1O.WOOOOO - 0.50427 
0.17135 11.3OOOOOo - 0.40677 
0.06175 11.8OOOOOO -0.15398 

-0.11243 12.3OOOOOO 0.29395 

B. ITERATION FOR EIGENVALLJES USING SECANT METHOD AND STARTING INTERVALS INDICATED 
BY SIGN-CHANGES ABOVE 

A 44 x Am 

2.02151 -0.00371 4.00555 0.00068 
1.99760 0.00041 3.99981 -0.OOOO3 
2.00001 -o.ooooO 4.00004 0.00001 
2.OoOOO -o.ooooO 4.OOOOO O.OOOOO 

5.99168 -0.Ow99 7.98320 0.00331 
5.99968 -0.00004 7.99868 O.OGO26 
6.00003 O.OOOOO 8.OOOOO O.OOOOO 
5.99999 O.OOOOO 

9.97558 0.0093 1 11.96917 -0.03287 
9.99720 0.00108 11.99553 -0.00482 

1o.OOoO2 -0.OcoO1 12.00007 0.00008 
1o.OooOO O.OOOW 12mOOo O.OOOOO 
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the eigenfunctions for large t this is difficult due to the instability of the problem. 
The imbedding technique has perhaps a little to offer here in that we can obtain 
an algorithm which gives the asymptotic behavior of the eigenfunction. 

We now consider B(x, 0) in (9). If X is an eigenvalue then A(x, 0) = 0 and hence 

u(t; x, e> = B(x, e> t@[-1 + o(l)] 

as t -+ co. Proceeding as we did in Section III we define 

Lqx, e> = (x + I)+ B(x, S), 

and obtain the boundary value problem 

f$ + $- [sin 28 5 - l] = @ [& - sin2 e T], 

lim 58(x, e) = cos e uniformIy in 8. 
x+m 

(15) 

A fact of interest is that the differential equation for 0 [see (12)] which appears 
in the application of the method of characteristics to (15) and (10) is the same 
equation which appears when the Priifer (or polar coordinate) transformation is 
applied to (U(S), u’(s)). Specifically the Priifer transformation is 

4(s) = arctan[u’(s)/u(s)], 

r(s) = {[u(s)]” + [u’(s)]~}~‘~. 

If u solves (13) it is easily verified that 

b’(s) = sin 2+(s)@/@ - I 

which is precisely the differential equation for 0 in (14) and (16). This is useful to 
us since, for X an eigenvalue, we know by (8) that u’(s)/u(s) -+ 0 as s -+ co. Hence 
#(<s) + arctan(0) = mr for some integer n (recall (s, e(s)) describes the character- 
istics along which g will be computed). Thus as x = s + co the solution to (15) 
along the characteristic, W, approaches cos IZ~ = f 1. 

Remark. We could have avoided (temporarily, at least) this discussion of the 
limit of 0 by defining B analogous to our definition of 0L in Section III (note that 
L%(x, 0) - cos 8 + 0 as x + co). However, in actually computing &’ it is (as 
discussed below) expedient to “integrate backwards”; and if this is done knowledge 
of the limit of 0 is necessary. 
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Solving (15) using the method of characteristics and the limit just described we get 

23 = f exp 1: [sin2 B f - 2-1 2s + 2 ds, 

tl = sin 2&s/X) - 1; O(x) = 8. (16) 

where the sign is + if the integer n is even, - if n is odd. The value of n can be 
determined if 0 is integrated for large s. The infinite integral in (16) can be shown 
to converge. 

Theoretically then, once the eigenvalues have been located (by work of Section IV) 
one can find 9 by (16); and then B(0, 6) = g(O, 8) for 9 = 0, z-/2 prescribes the 
behavior of the eigenfunctions for large t. However, numerically this algorithm 
does not enjoy the advantages of the algorithm for Cl?. Specifically, experience has 
shown that the integral in (16) is slow to converge. Moreover, this problem is 
complicated by the fact that, when X is an eigenvalue, the o-equation in (16) is 
unstable for large s (this is easily seen by inspection of the differential equation 
for s large and #(‘<s) = nr). 

The problem in computing (16) can be helped to some extent by integrating the 
e-equation backwards from s “large” to s = 0. In this regard we point out the 
following: 

(1) We know that fl(cc) = limz+oo o(s) = mr for some (unknown) integer n. 
Notice that in (16) the &equation and the expression for L~(x, 19) are both periodic 
in 0 with period n. Hence if we set gC(co) = 0 (i.e., gC(S) = 0 for S large) and 
integrate the g-equation backwards we see that f%(s) m g(<s) - rzr and the corre- 
sponding computation of L% is the desired approximation except for the sign. 

(2) Recall that the sign of B is determined by the integer n. But this can now 
be determined from the relation 0 = o(O) w &c(O) + nr; for example, 

IZ = nearest integer [ 
e - &(o) 

rr I* 
Using this approach and (16) we are able to compute 9 to 2-3 significant figures. 

To obtain higher accuracy it is doubtful if this algorithm is practical. So we do 
have a way of computing the asymptotic behavior of the eigenfunctions but it 
does not have the excellent stability properties enjoyed by the eigenvalue algorithms. 

VI. EIGENVALUES FOR BESSEL'S EQUATIONS 

We now illustrate the applicability of the imbedding technique to the singular 
finite-interval problem by considering Bessel’s equation 

m2 u”+fu’+ A--) 
( t2 u=o u(x) = cos 8, U’(X) = sin 8 (17) 
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Again, it is easily shown and well known that Bessel’s equation has two solutions 
of the form 

y(t) = t-” [l + o(l)]; u;(t) = -mt-m-1 [l + o(l)], 
(18) 

u&> = &t” [l + owl; l&(t) = _:tm-1 [l + o(l)], 

as t -+ Of. So solutions to (17) can be expressed 

u(t; x, 0) = Nx, 8) u&> + Hx, f?> uz(t>, 

where 
A(~, e) = ~~X~COS e + O(I)] 

as x -+ O+. We define LI?(x, 0) = 2x-“4x, 0) - cos 0 and proceeding as before 
we obtain 

~+-$[COS~e(i-~+$-)--$inecOse-~] 

sin2 e - m = 
4 x 

- sin e cos e (1 - h + $1 - (sin e + $ cos e), (19) 

lim Q!(x, 19) = 0 
x+0+ 

uniformly in 8. 

Once more the method of characteristics leads to a solution; 

x exp 11: [ksin2B(I ---A+$) - sin2~-m]dplds (20) 

Bl(s) = cos2 0 
( 
1 - h + $) -$sin28- 1; 0~~) = 8. 

The usual Bessel eigenvalue problem is, of course, 

Find the values of X > 0 so that the solution to (17) with x = 1, 
0 = 42 is bounded on [O, 11. 

Clearly the eigenvalues are precisely the zeros of @I, 42) which can be com- 
puted using (20). 

The tirst two eigenvalues for Bessel’s equation of orders m = 1, 2, and 3 were 
computed using (20) and the procedure outlined in Section IV. The results are 
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shown in Table II. The eigenvalues were computed to six significant figures. As in 
Section V the algorithm worked quite well; here, however, a certain amount of 
care must be exercised in integrating into the singularity at zero. 

TABLE II 

CALCULATION OF EIGENVALUES FOR THE BESSEL PROBLEM 

A. m=l 
eigenvalues are: 
14.6820, 49.2185 

x W) 

1O.OOOOOO -0.09631 
17.OOOOOO 0.02315 
24.OOOOOO 0.06707 
31.OOOOO0 0.06838 
38.OOOOOO 0.04930 
45.OOOOOO 0.02373 
52.OOOOOO -0.00345 

m=2 
eigenvalues are: 
26.3745, IO. 8499 

x WV 
-- -___~ 

23.OOOOOO -0.01029 
3o.OOOOOO 0.00743 
37.OOOOOO 0.01411 
44.OOOOOO 0.01441 
51.OOOOOO 0.01144 
58.OOOOOO 0.00724 
65.OOOOOO 0.00303 
72.OOOOOO -0.00062 

m=3 
eigenvalues are: 
40.7064, 95.2775 
h @A4 

34.OOOOOO -0.00668 
4l.OOOOOO 0.00020 
48.OOOOOO 0.00365 
55.OOOOOO 0.00487 
62.OOOOOO 0.00478 
69.OOOOOO 0.00396 
76.OOOOOO 0.00280 
9o.OOOOOO +0.ooo64 
97.OOOOOO -0.00018 

B. ITERATION FOR EIGENVAL~ES USING SECANT METHOD AND STARTING INTERVAD INDICATED 
BY SIGN-CHANGES ABOVE 

15.34471 0.00868 
14.56261 -0.00160 
14.68438 0.00003 
14.68194 -o.ooooO 
14.68201 O.OOOOO 

27.06779 0.00168 40.77875 0.00005 
26.19552 -0.00045 40.70750 O.OOOOO 
26.38008 0.00001 40.70680 -o.ooooO 
26.37467 0.00000 40.70680 O.OOOOO 

49.44768 - 0.00067 70.96360 
49.21098 0.00005 70.85196 
49.21851 O.OOOOO 70.85064 
49.21859 O.OOOOO 70.85068 
49.21860 O.OOOOO 70.85068 

-0.00005 95.45217 
-o.ooooO 95.26589 

O.OOOOO 95.28105 
-o.ooooO 95.27831 
-O.OOOOO 95.27759 

- 0.00002 
O.OOOOO 

-o.ooooo 
-o.ooooO 
-0.ooooo 

VII. CONCLUSIONS 

It should be clear that the methods illustrated here can be applied to a large 
number of eigenvalue problems of the classical Schrijdinger and Sturm-Liouville 
type. It is apparent that the ideas can also be used on other problems which are 
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concerned with the asymptotic behavior of solutions to second-order linear 
differential equations. The key requirement for applying these techniques is the 
knowledge of the asymptotic behavior of two independent solutions. It is hoped 
that the type of algorithm we have discussed has features which make it an 
attractive tool for such studies. 

Currently work is being done in attempting to apply these techniques to nonlinear 
second-order equations and higher order linear equations and systems. 

An ALGOL program designed to make the type of parameter computations 
discussed here is available on request. It has the feature that any number of new 
codes [depending on the coefficients a(t) and b(t) in U” + au’ + bu = 0] can 
easily be added. 
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